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A New Approach to the Design of
Gr:aded-Index Guided

Wave Devices
Durlcan W. Mills and Lakshman S. Tamil

Abstract—An inverse scattering approach to modeting single mode
gradient-index planar gnided wave devices is presented. The method
involves solving the Gelfand-Levitan -Marchenko integral eqnation to
obtain a refractive index profile which is infinite in extent. The theory is
developed to account for truncations of this refractive index profile,
illustrating the effects of a finite core width upon the propagation
constant. Refractive index profiles with symmetric and asymmetric
cladding indexes are dkcussed.

THE DESIGN of GRIN devices involves synthesis of refrac-
tive index profiles. In the standard direct lmethods, a refrac-

tive index profile is specified a priori and the quantities of
interest, usually the propagation constants and the mode func-
tions, are calculated using either analytical or numerical meth-
ods. A limited number of refractive index profiles, such as the
parabolic, exponential, and hyperbolic secant types, allow for
exact analytic solutions when they are considered infinite in
extent, but it is necessary to resort to numerical or perturbation
techniques to analyze the effects of a finite core width, which is a
necessary part of any practical design. We discuss here a new
approach, namely an inverse scattering method, in which the
refractive index profiles are reconstructed from the required
device characteristics, such as propagation constants and mode
functions. The method allows for efficient, exact analysis of the
effects of truncating the refractive index profile.

The propagation of TE modes in a planar GRIN device is
governed by a Schroedinger-type equation [1],

d2~
_+[k*–u(x)]v=o. (1)

Here, V = EY(x), k2 = k~n~ – ~2 and u(x) = k~[n~ –
n2( x)], where n2 represents the refractive index of the cladding,
n(x) the core index profile, and @the longitudinal propagation
constant(s). Propagation in the z direction has been assumed.
Note that V(x) vanishes in the cladding; at this stage it is
assumed the core is bounded by claddings of equal refractive
index.

According to inverse scattering theory [2], the potential V(x)
can be reconstructed from

v(x) = 2-3.(X, x), (2)

where the kernel K_ ( x, t) satisfies the Gelfand -
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Levitan-Marchenko (GLM) integral equation:

K_(x, t)+ R_(x+t)

+~x K-[x,f,R_(t+f,dr=O. ,3,
-a

The scattering data completely determines the reflected transient
or characteristic function R _(x + t):

R_(x, t) = &i;exp[Kn(x+ t)]

++/:mr.(k)exP[-ik(~+~)l~~j (4)
a

where r_(k) is the reflection coefficient for a plane wave
incident on V(x) from x = +m, and the set of dn’s are the
normalization constants for the N bound states (i.e., propagat-
ing modes) whose eigenvalues are represented by the discrete set
k. = iKn (Kn > O), for n = 1,2,.””, N. (For a wave incident
from x = –co, the potential is characterized by a corresponding
reflection coefficient r+(k); knowledge of either reflection co-
efficient is sufficient to reconstruct the potential.) The corre-
sponding transmission coefficient t_(k) ( = t+(k) = t(k)),
whose poles on the positive imaginary axis are the set of
eigenvalues {kn }, provides the propagation constants for the
guided modes. For arbitrary values of k, the Schroedinger
equation admits two Jest solutions, denoted f ~ ( k, x), each
with the asymptotic behavior

limff(k, x) = e*ikx, x+ +m. (5)

The functions f ~( kn, x) are proportional to the bound state
wave functions of the Schroedinger equation.

As an example of the GLM reconstruction method, consider
the single-mode (N= 1) reflectionless potential with scattering
data r(k) = O, dl = W, K ~ = 1. The reconstructed potential,
resulting from the straightforward application of (2)-(4), is
V(x) = –2 sechz X. In the context of optical waveguides, this
potential has been extensively studied using direct methods [3].
The Jest solutions corresponding to this potential take the form
[4]

ff(k, x) = e*ikx
[iki::xl

(6)

Note that sechz( x) approaches zero only as x + &~, necessi-
tating, in practical devices, truncation of the refractive index
profile at x = xl, x2 as shown in Fig.’ 1. (The values Xl, X2

may be positive or negative, the only restriction being xl s Y2).
These truncations represent core-cladding interfaces, which will
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Fig. 1. Untruncated reflectionless potential V(x) = –2 sechzx (dashed
line). Truncated potential (solid line) shown for xl = –1, x2 = 0.5.

alter the scattering data, reducing the magnitude of kl, since the

mode is less tightly bound, and altering r ~(k) since the poten-
tial is no longer reflectionless.

The transmission coefficient for a structure truncated at points
xl and x2 may be written in terms of the Jest solutions for the
original untruncated structure. While potentirds truncated at a
single point have been considered in the applied mathematics
literature [5], the method is extended here to take into account a
double truncation, which is representative of a guided-wave
structure. For these purposes, it is useful to consider the integral
representation of the Jest solutions [6]

/

sink(x – z’)
~t(k, x)=efikx+

k
u(z’)f~ (k, Z’) dZ’,

(7)

where the limits on the integral are [ – m, x] and [x, CO]for

.f_ (k, X) and J+(k, x), respectively. Relations between the
Jest solutions f+(k, x) and f- (k, x),

f,(k, X) = &f+(-k ,x)+
r=(k)
~f7(k, X), (8)

lead to the Wronskian relations

2 ik
— = W[f. (k>x), f+(k, x)]
t(k)

(9)

and

r~(k)

2ik t(k)
= +w[fT(k, x), f&(–k, x)] (10)

where W [f, g] = fg’ – gf’, the prime denoting differentiation
with respect to x.

Equations (7) - (10) provide all the relationships needed to
consider the effects of core-cladding interfaces. First, consider a
truncation at a single point xl. Equation (9) provides an expres-
sion for the transmission coefficient of this singly truncated
potential,

t~(k) = 2ikeikxl[fl+(k, xl) + ikf+(k, Xl)]-’, (11)

where the superscript T is used to denote a single truncation.
Equation (11) derives from the fact that f ~(k, X) = e- ‘kx for
x s xl, whereas for x z xl, ff(k, x) = f+(k, x), both of
which are evident from (7). Observe that the Wronskian is
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Fig. 2. Variation of pole position representing the propagating mode, as
core width is narrowed, (for case X2 = –Xl).

independent of the coordinate, allowing evaluation at any value,
in this case xl. Using similar reasoning, note that an additional
truncation, this time at x2, produces a doubly truncated poten-
tial with a transmission coefficient of the form

tTT(k) = –4k2e–ik(x2–xlJ[ fa fb – fc fd] – 1, (12)

derived with the help of (8)-(10), where

fa =fl+(k, xI) + ikf+(k, xl),

fb = -f+(-k, x2) + ikf+(-k, X2),

f,= fl+(-k, xl) + ikf+(-k, xl)

and

fd= -f’+(k, x2) + ikf+(k, X2).

Observe that t‘T(k) is now written in terms of the Jest solution
f +(k, x) of the simpler untruncated structure.

The width of the waveguide is controlled by the parameters
xl and Xz. As these are varied, causing a change in the core
width, the poles of t‘T(k) move in the complex k plane. As an
example, consider truncation of V(x) = –2 sech2 x. Calculation

of t‘T(k), using (6), yields two poles—one each on the upper
and lower Im k axes —the former representing the guided mode.
Fig. 2 illustrates the behavior of this bound state for the case of
a symmetric truncation at points xl and X2 such that x, = –X2.
Only as xl + O does kl vanish, indicating that a propagating
mode exists for any finite core width. The act of truncation
introduces a pole on the negative portion of the Im k axis,
whose behavior is illustrated in Fig. 3. As a test of this method,
it can be shown that as xl + CO,tTT(k) ~ (k + i)/(k – i), the
transmission coefficient of the untruncated structure [7].

In instances where V(x) approaches different values as x +
* co, t+(k)# t –(k). However, both exhibit the same bound
state poles, so either one is suitable for our purposes. This
situation is encountered in examples of GRIN devices where the
refractive indices of the regions bounding the core are different.
Suppose that instead of vanishing in the region x z x2, one has
V(X) = U, where U >0 z V(X2). Defining the quantity ~
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Fig. 3. Variation of position of additional pole in lower half plane for same
case as in Fig. 2.

= {(k’ - ii), one can proceed to calculate t~~(k) by suit-
ably modifying (12):

tU”(k) = –41c2e-’(zx2-kxl) [fa jb – fc id] – 1, (13)

where

~b = -y+(–k, x’) + izf+(-k, X2

and

id= -Y+(k, %) + i~f+(k, X2).

Fig. 4 illustrates pole behavior for an example n which the
guiding region is bounded by core-cladding iriterfaces at X2 =
0.5 (fixed) and at xl (variable). Assuming that V = +1.4 (and
V(X) = O for x < xl), calculations yield a pole that moves
down the axis as xl + 0.5. At xl = –0.02, the pole moves
onto the negative portion of the axis, indicating the core width at
which the guide no longer supports a propagating mode, con-
firming the results of direct methods that have shown that in the
case of asymmetric cladding indices, the propagating mode
disappears at a nortzero core width [8].

In conclusion, this method provides a viable procedure for
calculating the exact value of the propagation constant for a
finite width refractive index profile. The technique presented
here is completely general, allowing extension to multimode
waveguides and various other refractive index profiles.
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Fig. 4. Transformation of propagating mode from bound state (upper k

axis) to unbound condition (lower k axis) with narrowing of core. (Asym-
metric cladding indexes, X2 fixed at O.5).
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